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Tours, France

E-mail: radu@lmpt.univ-tours.fr

Abstract: We propose to compute the action and global charges of the asymptotically

anti-de Sitter solutions in Einstein-Gauss-Bonnet theory by adding boundary counterterms

to the gravitational action. The general expression of the counterterms and the boundary

stress tensor is presented for spacetimes of dimension d ≤ 9. We apply this tehnique

for several different types of black objects. Apart from static and rotating black holes,

we consider also Einstein-Gauss-Bonnet black string solutions with negative cosmological

constant.

Keywords: Classical Theories of Gravity, Black Holes.

mailto:brihaye@umh.ac.be
mailto:radu@lmpt.univ-tours.fr
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
8
)
0
0
6

Contents

1. Introduction 1

2. The formalism 3

2.1 The action and field equations 3

2.2 The counterterms and boundary stress tensor 4

3. EGB-AdS black holes 8

3.1 Static solutions 8

3.2 Rotating black holes with equal magnitude angular momenta 10

4. EGB-AdS black string solutions 12

4.1 The metric ansatz and reduced action 13

4.2 The asymptotics 13

4.3 The conserved charges and entropy 15

4.4 Numerical results 17

5. Further remarks 22

1. Introduction

The AdS/CFT (anti-de Sitter space/conformal field theory) correspondence [1] attracted

a lot of attention in the last decade. This conjecture tells that the partition function in a

d − 1 dimensional CFT is given in terms of the classical action in a d-dimensional gravity

theory with negative cosmological constant.

In light of this correspondence, asymptotically AdS black objects would offer the pos-

sibility of studying some aspects of the nonperturbative structure of certain quantum field

theories. Therefore it is of interest to find more general gravity solutions with negative

cosmological constant and to study their physics, trying to relate it to the physics of the

boundary theory.

An interesting case is provided by the solutions of the Einstein-Gauss-Bonnet (EGB)

theory in d ≥ 5 dimensions, since the Gauss-Bonnet (GB) term appears as the first cur-

vature stringy correction to general relativity [2, 3], when assuming that the tension of

a string is large as compared to the energy scale of other variables. The EGB equations

contain no higher derivatives of the metric tensor than second order and it has proven to

be free of ghost when expanding around flat space. In the AdS/CFT correspondence, the
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introduction of such higher order terms1 corresponds to next to leading order corrections

to the 1/N expansion of the CFT [5 – 7].

Similar to the case of Einstein gravity, when computing quantities like the action and

mass of EGB solutions, one encounters infrared divergences, associated with the infinite

volume of the spacetime manifold. The traditional approach to this problem is to use a

background subtraction whose asymptotic geometry matches that of the solutions. How-

ever, such a procedure causes the resulting physical quantities to depend on the choice of

reference background; furthermore, it is not possible in general to embed the boundary

surface into a background spacetime. For asymptotically AdS solutions of the Einstein

gravity, one can instead deal with these divergences via the counterterm method inspired

by the AdS/CFT correspondence [8]. The procedure consists of adding to the action suit-

able boundary counterterms, which are built up with curvature invariants of the boundary

metric and thus obviously they do not alter the bulk equations of motion. This yields a well-

defined Brown-York boundary stress tensor [9] and a finite action and mass of the system.2

In principle, there are no obstacles in computing the action and global charges of EGB

solutions by using a similar approach. At any given dimension one can write down only

a finite number of counterterms that do not vanish at infinity and this does not depend

upon the bulk theory is Einstein or GB. However, the presence in this case of a new length

scale implies a complicated expression for the coefficients of the boundary counterterms

and makes the procedure technically much more involved. To our knowledge, the only

cases considered in the literature3 correspond to d = 5 solutions [15 – 17], and solutions in

arbitrary dimension possesing a zero curvature4 boundary [18].

The first aim of this paper is to generalize the boundary counterterms and the quasilo-

cal stress energy tensor in [8] to EGB theory. Our results are valid for configurations with

d ≤ 9, although a general counterterm expression is also conjectured. Upon application

of the Gibbs-Duhem relation to the partition function, this yields an expression for the

entropy of a black objects which contains the GB corrections.

In the second part of this paper we apply this general formalism to asymptotically AdS

black holes and black strings in EGB theory. In the static black hole case, where a closed

form solution is known, the expressions we find for the mass-energy and entropy agree with

known results in the literature. Apart from these static solutions, we consider also rotating

black holes with equal magnitude angular momenta in a odd number of spacetime dimen-

sions. The second type of black objects studied in this work are the EGB generalization of

the asymptotically AdS black strings considered in [19, 20]. We find that these solutions

1Note, however, that the first non vanishing corrections that appear in the type IIB string effective

action differ from EGB, involving eight derivatives, i.e. a term involving four powers of the Riemann tensor

together with its supersymmetric counterparts [2, 4].
2This approach has been generalized for spacetimes which are not asymptotically AdS and the cosmo-

logical constant is replaced by a dilaton scalar potential, see e.g. [10]
3An alternative regularization prescription for any Lovelock theory with AdS asymptotics has been

proposed in [11 – 13]. This approch uses boundary terms with explicit dependence on the extrinsic curvature

Kab, also known as Kounterterms [14].
4In this case all curvature invariants are zero except for a constant. Therefore the only possible boundary

counterterm is proportional to the volume of the boundary, regardless of the number of dimensions.
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present some new qualitative features as compared to the case of Einstein gravity.

Our paper is structured as follows: in the next section we explain the model and

describe the computation of the physical quantities of the solutions such as their action

and mass-energy. Our proposal for the general counterterm expression in EGB theory is

also presented there. The general properties of the black hole solutions are presented in

section 3, while in section 4 we present the new results obtained in the case of EGB black

strings Their construction is based on both analytical and numerical techniques. We give

our conclusions and remarks in the final section.

2. The formalism

2.1 The action and field equations

We consider the EGB action with a negative cosmological constant Λ = −(d−2)(d−1)/2ℓ2

I =
1

16πG

∫

M

ddx
√−g

(

R − 2Λ +
α

4
LGB

)

, (2.1)

where R is the Ricci scalar and

LGB = R2 − 4RµνRµν + Rµνστ Rµνστ , (2.2)

is the GB term. In four dimensions this is a topological invariant; in higher dimensions it

is the most general quadratic expression which preserves the property that the equations

of motion involve only second order derivatives of the metric. LGB can also be viewed as

the second order term in the Lovelock theory of gravity constructed from vielbein, the spin

connection and their exterior derivatives without using the Hodge dual, such that the field

equations are second order [21, 22]. The constant α in (2.1) is the GB coefficient with

dimension (length)2 and is positive in the string theory. We shall therefore restrict in this

work to the case α > 0, although the counterterm expression does not depend on this choice.

The variation of the action (2.1) with respect to the metric tensor results in the equa-

tions of the model

Rµν − 1

2
Rgµν + Λgµν +

α

4
Hµν = 0 , (2.3)

where

Hµν = 2(RµσκτR σκτ
ν − 2RµρνσRρσ − 2RµσRσ

ν + RRµν) − 1

2
LGBgµν . (2.4)

For a well-defined variational principle, one has to supplement the action (2.1) with the

Gibbons-Hawking surface term [23]

I
(E)
b = − 1

8πG

∫

∂M
dd−1x

√−γK , (2.5)

and its counterpart for the GB gravity [3]

I
(GB)
b = − α

16πG

∫

∂M
dd−1x

√−γ
(

J − 2GabK
ab
)

, (2.6)
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where γab is the induced metric on the boundary, K is the trace of the extrinsic curvature

of the boundary, Gab is the Einstein tensor of the metric γab and J is the trace of the tensor

Jab =
1

3
(2KKacK

c
b + KcdK

cdKab − 2KacK
cdKdb − K2Kab) . (2.7)

We shall consider spacetimes of negative constant curvature in the asymptotic region, which

implies the asymptotic expression of the Riemann tensor R λσ
µν = −(δλ

µδσ
ν −δσ

µδλ
ν )/ℓ2

c , where

ℓc is the new effective radius of the AdS space in EGB theory.5 We have found convenient

to write

ℓc = ℓ

√

1 + U

2
, with U =

√

1 − α(d − 3)(d − 4)

ℓ2
, (2.8)

which results in a compact form for the couterterms and a simpler expression of the black

string asymptotics. One should also notice the existence of an upper bound for the GB

coefficient, α ≤ αmax = ℓ2/(d− 3)(d− 4), which holds for all asymptotically AdS solutions.

2.2 The counterterms and boundary stress tensor

The action and global charges of the EGB-Λ solutions are computed by using a suitable

generalization of the procedure proposed by Balasubramanian and Kraus [8] for Einstein

gravity with negative cosmological constant. This technique was inspired by the AdS/CFT

correspondence (since quantum field theories in general contains counterterms) and consists

of adding to the action suitable boundary counterterms Ict, which are functionals only of

curvature invariants of the induced metric on the boundary. The number of terms that

appears grows with the dimension of the spacetime.

To regularize the action of the d < 8 solutions, we supplement the general action

(which contains the surface terms for Einstein and GB gravity) with the following bound-

ary counterterms

I0
ct =

1

8πG

∫

∂M
dd−1x

√−γ

{

−
(

d − 2

ℓc

)(

2 + U

3

)

− ℓcΘ (d − 4)

2(d − 3)
(2 − U)R (2.9)

− ℓ3
cΘ (d − 6)

2(d − 3)2(d − 5)

[

U

(

RabR
ab − d − 1

4(d − 2)
R

2

)

− d − 3

2(d − 4)
(U − 1)LGB

]}

,

where R, Rab and LGB are the curvature, the Ricci tensor and the GB term associated with

the induced metric γ. Also, Θ(x) is the step-function with Θ (x) = 1 provided x ≥ 0, and

zero otherwise. One can see that as α → 0 (U → 1), one recovers the known counterterm

expression in the Einstein gravity [8, 25, 26].

A similar expression can be written for higher dimension than seven, with new terms

entering at any even d. However, their complexity strongly increases with d. Based on the

relations we have derived for d < 10, we conjecture the following general expression for the

5For a precise definition of asymptotically AdS spacetime in higher curvature gravitational theories, see

e.g. [24].
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boundary counterterm in the EGB theory6

I0
ct =

1

8πG

∫

∂M
dd−1x

√−γ

{

∑

k≥1

Θ (d − 2k)

(

f1(U)LE + f2(U)L(k−1)

)}

, (2.10)

where LE is the corresponding k-th part of the counterterm lagrangean for a theory with

only Einstein gravity in the bulk (with the length scale ℓ in front of it replaced by the

new effective AdS radius ℓc) and L(k−1) is the (k − 1) term in the Lovelock hierarchy. The

functions f1(U), f2(U) have the general expression

f1 = 1 + c1(U − 1), f2 = ℓ2k−3
c c2(U − 1), (2.11)

where c1, c2 are d-dependent coefficients. The series truncates for any fixed dimension,

with new terms entering at every new even value of d.

The relation (2.9) contains already the cases k = 1, 2, 3. For k = 1 one finds c1 = 0,

c2 = −(d − 2)/3, while LE = −(d − 2)/ℓc, L(0) = 1. Taking k = 2 yields c1 = 0,

c2 = 1/(2(d−3)) and LE = −ℓcR/2(d−3), L(1) = R. The value k = 3 implies the following

expression for the new terms in (2.10)

c1 = 1, c2 =
1

4(d−3)(d−4)(d−5)
, (2.12)

LE = − ℓ3
c

2(d − 3)2(d − 5)

(

RabR
ab − d−1

4(d−2)
R

2

)

, L(2) = LGB.

The case k = 4 is more involved, with

LE =
ℓ5
c

(d − 3)3(d − 5)(d − 7)

(

3d − 1

4(d − 2)
RR

abRab −
(d − 1) (d + 1)

16(d − 2)2
R

3 (2.13)

−2Rab
R

cd
Racbd+

d − 3

2(d − 2)
R

ab∇a∇bR−R
ab∇2

Rab+
1

2(d−2)
R∇2

R

)

,

as given in [27], and the third Lovelock term

L(3) = 2Rabcd
RcdefR

ef
ab + 8Rab

cdR
ce

bfR
df

ae + 24Rabcd
RcdbeR

e
a (2.14)

+3RR
abcd

Rcdab + 24Rabcd
RcaRdb + 16Rab

RbcR
c
a − 12RR

ab
Rab + R

3 ,

the constants c1, c2 in the expression of f1, f2 being

c1 = 31/30, c2 = −19/57600, for d = 8, (2.15)

c1 = 2365/2313, c2 = −149/2664576, for d = 9.

6Following [8, 25], the d ≤ 9 counterterms were obtained by demanding cancellation of divergencies for

a number of solutions in EGB theory. For example, for d ≤ 7, the only geometric terms that possible do

not vanish at infinity are 1/ℓc, R and R
2, RabR

ab, RabcdR
abcd. However, the last term does not appear in the

Einstein gravity expression. Therefore, we have found convenient to express the d ≤ 7 counterterm (2.9)

as the sum of a Einstein-gravity part (multiplied with some U -dependent factors) and a GB term with a

factor of U − 1 in front of it (i.e. it vanishes in the Einstein gravity limit of the bulk theory). The same

approach yields a relatively simple expression of the counterterm also for d = 8, 9. For the generality of the

results proposed here, see the comments in the last section of this work.
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Varying the total action with respect to the boundary metric γab

Tab =
2√−γ

δ

δγab

(

I + I
(E)
b + I

(GB)
b + I0

ct

)

(2.16)

results in the boundary stress-energy tensor:

Tab=Kab−γabK+
α

2

(

Qab−
1

3
Qγab

)

− d−2

ℓc
γab

(

2+U

3

)

+
ℓcΘ (d−4)

d−3
(2−U)

(

Rab−
1

2
γabR

)

+ℓ3
cΘ (d − 6)

{

U

(d − 3)2(d − 5)

(

− 1

2
γab

(

RcdR
cd − (d − 1)

4(d − 2)
R

2

)

− (d − 1)

2(d−2)
RRab+2Rcd

Rcadb−
d − 3

2(d−2)
∇a∇bR+∇2

Rab−
1

2(d−2)
γab∇2

R

)

(2.17)

− U − 1

2(d − 3)(d − 4)(d − 5)
Hab

}

+ . . . ,

where [28]

Qab = 2KKacK
c
b − 2KacK

cdKdb + Kab(KcdK
cd − K2)

+2KRab + RKab − 2Kcd
Rcadb − 4RacK

c
b , (2.18)

and Hab given by (2.4) in terms of the boundary metric γab.

The expression (2.17) is valid for d ≤ 7. For d ≥ 8, the boundary stress tensor receives

a supplementary constribution from the k = 4 term in (2.10). The Einstein part of it can

be found in ref. [27]; the other contribution represents the third Lovelock tensor as derived

in ref. [29] (from (2.10), (2.16) they are both multiplied with U -dependent factors). These

extra-terms are very long and we prefere do not include them here.

However, for odd values of d, the counterterms proposed above may fail to regularize

the action. This is the case of the black string solutions we shall discuss in in the section

4, or of the EGB Euclidean AdSd metric ds2 = dr2

1+r2/ℓ2c
+ r2dΩ2

d−1 (where dΩ2 is the unit

metric on the sphere). Already in the α = 0 case, the action of these solutions presents a

logarithmic divergence, whose coefficient is related to the conformal Weyl anomaly in the

dual theory defined in a even dimensional spacetime.

However, the divergences are removed by adding the following extra term to (2.1)

Is
ct =

1

8πGd

∫

∂M
dd−1x

√−γ log

(

r

ℓc

){

δd,5
ℓ3
c

8

[

U

(

1

3
R

2−RabR
ab

)

−(U−1)(R2 (2.19)

−4RabR
ab+RabcdR

abcd

]

−δd,7
ℓ5
c

128

[

1

18
(19U−1)

(

RR
ab

Rab−
3

25
R

3−2Rab
R

cd
Racbd

− 1

10
R

ab∇a∇bR+R
ab

�Rab−
1

10
R�R

)

− 11

54
(U−1)L(2)

]

+. . .

}

,

(with r the radial coordinate normal to the boundary). This gives a supplementary contri-

bution to the boundary stress tensor which removes the logaritmic divergencies from the

solutions’ global charges. Note that a logarithmic contribution to the counterterms also

appears naturally in a formulation of the holographic renormalization procedure in terms

of the extrinsic curvature [30].
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The computation of the global charges associated with the Killing symmetries of the

boundary metric is done in a similar way to the case of Einstein gravity. One assumes that

the boundary submanifold can be foliated in a standard ADM form

γabdxadxb = −N2dt2 + σij(dyi + N idt)(dyj + N jdt), (2.20)

where N and N i are the lapse function, respectively the shift vector, and yi, i = 1, . . . , d−2

are the intrinsic coordinates on a closed surface Σ of constant time t on the boundary. Then

a conserved charge

Qξ =

∮

Σ
dd−2y

√
σuaξbTab, (2.21)

can be associated with the closed surface Σ (with normal ua), provided the boundary

geometry has an isometry generated by a Killing vector ξa. For example, the conserved

mass/energy M is the charge associated with the time translation symmetry, with ξ = ∂/∂t.

The background metric upon which the dual field theory resides is hab = limr→∞
ℓ2c
r2 γab.

The expectation value of the stress tensor of the dual theory can be computed using the

relation [31]:

√
−hhab〈τbc〉 = lim

r→∞

√−γγabTbc, (2.22)

and is expected to present a nontrivial dependence on the parameter α.

The Hawking temperature TH of the black objects is found by demanding regularity

of the Euclideanized manifold, or equivalently, by evaluating the surface gravity. The en-

tropy of the black hole objects is computed in this work using the (Euclidean) path-integral

formalism.7 In this approach, the gravitational thermodynamics is based on the general

relation [34]

Z =

∫

D [g] D [Ψ] e−I[g,Ψ] ≃ e−Icl ,

where D [g] is a measure on the space of metrics g, D [Ψ] a measure on the space of mat-

ter fields Ψ and Icl is the classical action evaluated on the equations of motion of the

gravity/matter system. This yields an expression for the entropy (with β = 1/TH)

S = β(M − µiCi) − Icl, (2.23)

upon application of the Gibbs-Duhem relation to the partition function, with chemical

potentials Ci and conserved charges µi (see e.g. [35]). In Einstein gravity, the entropy

computed in this way is one quarter of the event horizon area for any black object. How-

ever, a GB term in the action may provide a nonzero contribution to S. Finding this

7Note, however, that not all solutions with Lorentzian signature present reasonable Euclidean counter-

parts (see, e.g. [32]), in which case one is forced again to consider a ’quasi-Euclidean’ approach as described

in [33]. In this case the action I is regarded as a functional over complex metrics that are obtained from the

real, stationary, Lorentzian metrics by using a transformation that mimics the effect of the Wick rotation

t → iτ . The values of the extensive variables of the complex metric that extremize the path integral are

the same as the values of these variables corresponding to the initial Lorentzian metric.

– 7 –
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correction within the Euclidean approach requires a consideration of concrete configura-

tions, no general result being available. However, all solutions should satisfy the first law

of thermodynamics

dS = β(dM − µidCi). (2.24)

3. EGB-AdS black holes

3.1 Static solutions

Due to the nonlinearity of the field equations, it is very difficult to find exact solutions of

the EGB equations. However, the static spherical and topological black holes are known

in closed form, as well as their generalization with an extra U(1) field.

The counterparts of the Schwarzschild solution in EGB theory with negative cosmo-

logical constant were found in [36, 37] and have a line element

ds2 =
dr2

f(r)
+ r2dΣ2

k,d−2 − f(r)dt2 (3.1)

where the (d−2)-dimensional metric dΣ2
k,d−2 is

dΣ2
k,d−2 =











dΩ2
d−2 for k = +1

∑d−2
i=1 dx2

i for k = 0

dΞ2
d−2 for k = −1 ,

(3.2)

and dΩ2
d−2 denoting the unit metric on Sd−2. By Hd−2 we will understand the (d−2)-

dimensional hyperbolic space, whose unit metric dΞ2
d−2 can be obtained by analytic con-

tinuation of that on Sd−2.

The function f(r) presents a complicated dependence on ℓ, α (here we restrict to the

branch of solutions which are well behaved in the α → 0 limit)

f(r) = k +
2r2

α(d − 3)(d − 4)

(

1 −
√

1 + α(d − 3)(d − 4)

(

µ

rd−1
− 1

ℓ2

)

)

, (3.3)

with µ a constant.

The Hawking temperature of the black holes is TH = f ′(rh)/(4π), where a prime

denotes the derivative with respect the radial coordinate and rh is the largest positive root

of f(r), typically associated to the outer horizon of a black hole.

One can compute the action of these solutions in a simple way by noticing the relation

1

2

(

R − 2Λ +
1

4
αL

(1)
GB

)

= r2−d

(

−1

2
rd−2f ′ +

1

4
α(d − 2)(d − 3)rd−4f ′(f − k)

)′

. (3.4)

A straightforward computation8 shows that the contribution of the bulk action at infinity

together with the boundary terms I
(E)
b + I

(GB)
b + I0

ct is equal to βM , where M is the

mass-energy of the solutions as computed from the boundary stress tensor

M =
(d − 2)Vk,d−2

16πG
µ + M0

k . (3.5)

8The supplementary counterterm Is

ct vanishes for the boundary geometry of the black hole solutions.

– 8 –
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In the above expression

M0
k =

Vk,d−2

16πG

(

3k2

4
ℓ2
c(3U − 2)δd,5 −

5k

8
ℓ4
c

5U − 2

3
δd,7 +

35k2

64
ℓ6
c

7U − 2

5
δd,9 + . . .

)

(3.6)

is the Casimir mass-energy9 and Vk,d−2 is the (dimensionless) volume associated with the

metric dΣ2
k,d−2. Following [25], one can extrapolate the Casimir term to

M0
k =

Vk,d−2

8πG
(−k)(d−1)/2 (d − 2)!!2

(d − 1)!

(

(d − 2)U − 2

d − 4

)

ℓd−3
c . (3.7)

From (2.23) one finds the EGB black hole entropy

S = S0 + Sc with S0 =
AH

4G
, Sc = α

Vk,d−2

4G

k

2
rd−4
h (d − 2)(d − 3), (3.8)

with the event horizon area AH = rd−2
h Vk,d−2. One can easily verify that the first law of

thermodynamics (2.24) also holds, with µi = Ci = 0.

The expressions of mass (without the Casimir term) and entropy agree with previous

results in the literature found by using a different approach [39 – 42]. The Noetherian (or

Wald’s) approach [43] is particularly interesting, presenting an expression of S which is

holographic in spirit [40]. As discussed in [41], the entropy of the black hole solutions (3.1)

can be written as a integral over the event horizon

S =
1

4G

∫

Σh

dd−2x
√

h̃(1 +
α

2
R̃), (3.9)

(where h̃ is the determinant of the induced metric on the horizon and R̃ is the event horizon

curvature), which agrees with the result (3.8). This relation appears to be universal, being

satisfied by the other EGB black objects discussed in this work.

The stress tensor of the dual theory computed according to (2.22) has the same ex-

pression as in the α = 0 case

8πG〈τ b
a〉 =

M

2ℓd−2
c

(δb
a + (d − 1)uau

b) , (3.10)

where ua = δt
a. This tensor is finite, covariantly conserved and manifestly traceless and

presents a nontrivial dependence of the GB coefficient α.

The GB term gives rise to some interesting effects on the thermodynamics of black

holes in AdS space. First, as observed in [15, 38], for k = −1 topological black holes, the

second term in (3.8) can make the whole expression negative for sufficiently small black

holes. In the k = 0 case, where the horizon is flat, the GB term has no effect on the

expression for entropy, which is simply the area of the horizon. For spherically symmetric

solutions, a locally stable small black holes branch appears for d = 5, which is absent in

the case without the GB term. However, for d ≥ 6, the thermodynamic behavior of the

EGB black holes is qualitatively similar to the case with α = 0. Detailed discussions of the

thermodynamics of EGB black holes can be found in [15, 16, 39].

9Note that the expression of the Casimir energy agrees with that found in [11] by using Kounterterms

regularisation.

– 9 –



J
H
E
P
0
9
(
2
0
0
8
)
0
0
6

3.2 Rotating black holes with equal magnitude angular momenta

The computation of the global charges and entropy of the rotating black holes in EGB

theory represents another nontrivial aplication of the general formalism in section 2. No

exact solutions are available in this case,10 except for the k = 0 configurations in [45].

However, these exact solutions are essentially obtained by boosting the static configurations

with flat horizon; thus locally they are equivalently to the static ones but not globally.

In this subsection we consider a class of EGB black holes in a odd number of spacetime

dimensions d = 2N + 1 (N ≥ 2), possessing equal magnitude angular momenta and a

spherical horizon topology. This factorizes the angular dependence [46] and reduces the

problem to studying the solutions of four differential equations with dependence only on

the radial variable r. The explicit computation of the black holes’ action and boundary

stress tensor also simplifies drastically in this case.

These solutions are found for the following parametrization of the metric11

ds2 = −b(r)dt2 +
dr2

f(r)
+ g(r)

N−1
∑

i=1





i−1
∏

j=0

cos2 θj



 dθ2
i

+h(r)
N
∑

k=1

(

k−1
∏

l=0

cos2 θl

)

sin2 θk (dϕk − w(r)dt)2 (3.11)

+(g(r) − h(r))

{

N
∑

k=1

(

k−1
∏

l=0

cos2 θl

)

sin2 θkdϕ2
k −

[

N
∑

k=1

(

k−1
∏

l=0

cos2 θl

)

sin2 θkdϕk

]2






,

where θ0 ≡ 0, θi ∈ [0, π/2] for i = 1, . . . , N − 1, θN ≡ π/2, ϕk ∈ [0, 2π] for k = 1, . . . , N .

The metric gauge choice we consider here is h(r) = r2. Note also that the k = 1 static

black holes (3.1) are recovered for w(r) = 0, h(r) = g(r) = r2 and b = f as given by (3.3).

Although only the d = 5 case has been studied so far in the literature by using numer-

ical methods [17], similar solutions should exist for all N . A discussion of the properties

of these stationary black holes is beyond the purposes of this work. Here we shall present

only a computation of their mass-energy, angular momentum and entropy, in which case

only the asymptotic form of the metric is required, looking for the effects at this level of

the GB term.12

By solving the EGB field equations (2.3) for large r, one find that these rotating black

10Slowly rotating EGB solutions have been considered recently in [44] within a perturbative approach.
11For α = 0 (i.e. no GB term), these solutions are a subset of the general configurations with the

maximal number of rotation parameters discussed in [47], with f(r) = 1+r2/ℓ2 −2M̂Ξ/rd−3 +2M̂â2/rd−1,

h(r) = r2
“

1 + 2M̂ â2/rd−1
”

, w(r) = 2M̂â/rd−3h(r), g(r) = r2, b(r) = r2f(r)/h(r), where M̂ and â are

two constants related to the solution’s mass and angular momentum and Ξ = 1 − â2/ℓ2.
12For a different computation of mass and angular momentum of rotating black holes in EGB gravity,

see [48, 49].
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holes present the following asymptotics in terms of the arbitrary constants f̄ , b̄, j̄

f = 1 +
r2

ℓ2
c

+ f̄

(

ℓc

r

)d−3

+ . . . , b = 1 +
r2

ℓ2
c

+ b̄

(

ℓc

r

)d−3

+ . . . , (3.12)

h/r2 = 1 + (f̄ − b̄)

(

ℓc

r

)d−3

+ . . . , w(r) =
j̄

r

(

ℓc

r

)d−2

+ . . . ,

while the near horizon expansion of the nonextremal solutions is

f(r) = f1(r − rh) + O(r − rh)2, h(r) = hh + O(r − rh), (3.13)

b(r) = b1(r − rh) + O(r − rh)2, w(r) = wh + O(r − rh),

with f1, b1, hh positive constants. For the solutions within the ansatz (3.11), the event

horizon’s angular velocities are all equal, Ωk = ΩH = w(r)|r=rh
. The Killing vector χ =

∂/∂t +
∑

k Ωk∂/∂ϕk is orthogonal to and null on the horizon.

The Hawking temperature and the event horizon area of these configurations are

TH =

√

b′(rh)f ′(rh)

4π
, AH = rd−3

h

√

hhV1,d−2. (3.14)

The conserved charges of the rotating black holes are obtained by using again the countert-

erm method in conjunction with the quasilocal formalism. Based on the results we have

obtained for spacetime dimensions d = 5, 7, 9, we propose the following general expression

for mass-energy and angular momentum:13

M =
ℓd−3
c U

16πG

[

f̄ − (d − 1)b̄
]

V1,d−2 + M0
1 , J(k) = J =

ℓd−2
c

8πGd
j̄UV1,d−2 , (3.15)

with M0
1 the Casimir energy as given by (3.7). The entropy of these solutions as computed

from the general relation (2.23) (with µi = J, Ci = ΩH) is

S = S0 + Sc, with S0 =
AH

4G
, Sc = α

V1,d−2

8G
(d − 3)

√

hhrd−5
h

(

d − 1 − hh

r2
h

)

. (3.16)

It is interesting to note that the entropy (3.16) can also be written in the Wald’s form (3.9).

However, the derivation of (3.9) in ref. [41] covers the case of static solutions only; it would

be interesting to extend it by including the effects of rotation. Of course, the ultimate test

of the formulae (3.15), (3.16) will be possible when the exact solutions will be found (i.e.

the relation between b1, f1, hh and f̄ , b̄, j̄) and verify that, with these definitions, the first

law of thermodynamics is satisfied.

The boundary metric upon which the dual field theory resides corresponds to a static

Einstein universe in (d−1) dimensions with line element habdxadxb = ℓ2
cdΣ2

1,d−2−dt2. The

stress tensor for the boundary dual theory has also an interesting form. Restricting to d = 5,

13Note that these quantities are evaluated in a frame which is non-rotating at infinity.
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one finds (with x1 = θ1, x2 = ϕ1, x3 = ϕ2, x4 = t and dΣ2
1,3 = dθ2

1 +sin2 θ1ϕ
2
1 +cos2 θ1ϕ

2
2)

8πG〈τa
b 〉 =

(

3U − 2

8ℓc
− f̄U

2ℓc

)











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3











− 2U

ℓc
(b̄ − f̄)











0 0 0 0

0 sin2 θ1 cos2 θ1 0

0 sin2 θ1 cos2 θ1 0

0 0 0 −1











+2ĵU











0 0 0 0

0 0 0 sin2 θ1

0 0 0 cos2 θ1

0 − 1
ℓ2c

− 1
ℓ2c

0











. (3.17)

As expected, this traceless stress tensor is finite and covariantly conserved.

4. EGB-AdS black string solutions

The k = 1 Schwarzschild-AdS(-GB) black hole solutions in d-dimensions have an event hori-

zon of topology Sd−2, which matches the Sd−2 topology of the spacelike infinity. Horowitz

and Copsey found in [19] a different type of d = 5 solution of Einstein equations with

negative Λ, with an event horizon topology S2 × S1. The configurations there have no de-

pendence on the ‘compact’ extra dimension, and their conformal boundary is the product

of time and S2 × S1. These solutions have been generalized to higher dimensions d ≥ 5

in [20], configurations with an event horizon topology Hd−3 × S1 being considered as well.

Black objects with event horizon topology Sd−3 × S1 matching that of the spacelike

infinity are familiar from the Λ = 0 physics and they are usually called black strings [50].

The solutions in [19, 20] present many similar properties with the Λ = 0 case, and are

naturally interpreted as the AdS counterparts of these configurations.14 Although the AdS

black strings are not known in closed form,15 one can analyse their properties by using a

combination of analytical and numerical methods, which is enough for most purposes.

Different from the Λ = 0 limit, it was found in [20] that the AdS black string solutions

with an event horizon topology Sd−3 × S1 have a nontrivial, vortex-like globally regular

limit with zero event horizon radius. As argued in [19, 20], these solutions provide the

gravity dual of a field theory on a Sd−3 × S1 × S1 (or Hd−3 × S1 × S1) background.

Generalizations of AdS black strings with gauge fields are studied in [53 – 56]. The

ref. [54] discussed also the properties of a set of rotating solutions. The issue of Gregory-

Laflamme instability [57] for AdS black strings in Einstein gravity was addressed in [58],

nonuniform solutions (i.e. with dependence on the compact ‘extra’-dimension) being con-

structed at the perturbative level in [59].

In this section we present arguments for the existence of asymptotically AdS black

strings in EGB theory and analyse their basic properties. This provides also an interesting

14Note that these configurations are very different from the warped AdS solutions as discussed for instance

in [51], although the latter are also usually called black strings in the literature. General remarks about

the properties of these solutions in Lovelock gravity are presented in [52].
15See, however, the d = 5 supersymmetric Einstein-U(1) magnetic black string exact solutions in [53].
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aplication of the formalism in section 2, since the AdS black strings have no obvious

background. For d = 5, the work here generalizes for Λ < 0 the Kaluza-Klein EGB black

strings discussed in ref. [60].

4.1 The metric ansatz and reduced action

We consider the following parametrization of the d-dimensional line element (with d ≥ 5)

ds2 = a(r)dz2 +
dr2

f(r)
+ g2(r)dΣ2

k,d−3 − b(r)dt2 , (4.1)

the ’extra’-direction z being compact16 with period L. For g(r) = r, this reduces to the

metric ansatz in [20].

Without fixing a metric gauge, a straightforward computation leads to the following

reduced action of the system

Aeff =

∫

drdt Leff , with Leff = LE +
α

4
LGB, (4.2)

where

LE = (d − 3)(d − 4)

√

ab

f
gd−5(k + fg′2) +

1

2

√

f

ab
gd−3a′b′

+(d − 3)
√

abfgd−4

(

a′

a
+

b′

b

)

g′ − 2Λgd−3

√

ab

f
, (4.3)

LGB = (d − 3)(d − 4)

√

f

ab
gd−5a′b′(k − fg′2)

−2

3
(d − 3)(d − 4)(d − 5)

√

abfgd−6

(

a′

a
+

b′

b

)

g′(fg′2 − 3k) (4.4)

+
1

3
(d − 3)(d − 4)(d − 5)(d − 6)

√

ab

f
gd−7(3k2 + 6kfg′2 − f2g′4).

The corresponding equations for the metric functions a, b, f are found by taking the varia-

tion of Aeff with respect to a, b, f and g and fixing after that the metric gauge g(r) = r (this

is equivalent to directly solving the EGB equations, but technically simpler). The resulting

relations are very long and we do not include them here. Similar to the case of Einstein

gravity, the equations for a and f are first order while the equation for b is second order.

4.2 The asymptotics

We consider non-extremal black string solutions presenting the following expansion near

the event horizon (taken at constant r = rh)

a(r)=ah+O(r−rh), b(r)=b1(r−rh)+O(r−rh)2, f(r)=f1(r−rh)+O(r−rh)2, (4.5)

16For these uniform black string solutions, the period L is an arbitrary positive constant and plays no

role in our results. However, similar to the Λ = 0, its value is crucial when discussing the issue of Gregory-

Laflamme instability [58, 59] of these objects.
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with all coefficients fixed by the parameters ah, b1. The condition for a regular event

horizon is f ′(rh) > 0, b′(rh) > 0 and ah a positive constant. In the k = −1 case, this

implies the existence of a minimal value of the event horizon radius.

We consider solutions of the equations of motion whose boundary topology is the

product of time and Sd−3 ×S1, Rd−3 ×S1 or Hd−3 ×S1. For even values of the spacetime

dimension d, the solutions of the field equations admit at large r a power series expansion

of the form:

a(r) =

(

d − 4

d − 3

)

k +
r2

ℓ2
c

+

(d−4)/2
∑

j=1

aj

(

ℓc

r

)2j

+ cz

(

ℓc

r

)d−3

+ O(1/rd−2),

b(r) =

(

d − 4

d − 3

)

k +
r2

ℓ2
c

+

(d−4)/2
∑

j=1

aj

(

ℓc

r

)2j

+ ct

(

ℓc

r

)d−3

+ O(1/rd−2), (4.6)

f(r) =
k(d − 1)(d − 4)

(d − 2)(d − 3)
+

r2

ℓ2
c

+

(d−4)/2
∑

j=1

fj

(

ℓc

r

)2j

+ (cz + ct)

(

ℓc

r

)d−3

+ O(1/rd−2),

where aj, fj are constants depending on the index k and the spacetime dimension only.

Specifically, we find

a1 =
k2(4U − 1)

27U
, f1 =

(59U − 11)k2

216U
for d = 6, (4.7)

a1 =
k2(49U − 9)

1125U
, f1 =

(177U − 17)k2

2250U
, (4.8)

a2 = −2k(63−U(1381−8118U))

253125U2
, f2 = −8k(9−U(178−1269U))

84375U2
, for d = 8,

their expression becoming more complicated for higher d, with no general pattern becoming

apparent.

Similar to the α = 0 case, the corresponding expansion for odd values of d contains

logarithmic terms

a(r) =

(

d − 4

d − 3

)

k +
r2

ℓ2
c

+

(d−5)/2
∑

j=1

āj

(

ℓc

r

)2j

+ ζ log

(

r

ℓc

)(

ℓc

r

)d−3

+cz

(

ℓc

r

)d−3

+ O

(

log r

rd−1

)

, (4.9)

b(r) =

(

d − 4

d − 3

)

k +
r2

ℓ2
c

+

(d−5)/2
∑

j=1

āj

(

ℓc

r

)2j

+ ζ log

(

r

ℓc

)(

ℓc

r

)d−3

+ct

(

ℓc

r

)d−3

+ O

(

log r

rd−1

)

, (4.10)

f(r) =
k(d − 1)(d − 4)

(d − 2)(d − 3)
+

r2

ℓ2
c

+

(d−5)/2
∑

j=1

f̄j

(

ℓc

r

)2j

+ 2ζ log

(

r

ℓc

)(

ℓc

r

)d−3

+(cz + ct + c0)

(

ℓc

r

)d−3

+ O

(

log r

rd−1

)

, (4.11)
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where, restricting to the first two values of d

c0 =
k2(1 − U)

36U
for d = 5, c0 =

k3(35U − 17)

3200U
for d = 7, (4.12)

and

ζ =
k2

12
for d = 5, ζ =

k(3 − 57U)

1600U
for d = 7, (4.13)

ā1 =
k2(23U − 5)

320U
, f̄1 =

k2(52U − 7)

400U
for d = 7. (4.14)

For any value of d, the large r form of the solutions presents two arbitrary parameters ct

and cz which uniquelly fix the coefficients of all terms decaying faster than 1/rd−3.

4.3 The conserved charges and entropy

Apart from the mass-energy M , these solutions possess a second charge associated with

the compact z direction, corresponding to the black string’s tension T . The computation

of the boundary stress tensor Tab based on the relations in section 2 is straightforward and

we find the following expressions for mass and tension (the relations here extrapolate the

results found for 5 ≤ d ≤ 9)

M = M0 + M (k,d)
c , M0 =

ℓd−4
c

16πG

[

cz − (d − 2)ct

]

ULVk,d−3 , (4.15)

T = T0 + T (k,d)
c , T0 =

ℓd−4
c

16πG

[

(d − 2)cz − ct

]

UVk,d−3 , (4.16)

where M
(k,d)
c and T (k,d)

c are Casimir-like terms which appear for an odd spacetime dimen-

sion only,

M (k,d)
c = −LT (k,d)

c =
ℓd−4
c

8πG
Vk,d−3L

(

3 − 2U

24
k2δd,5 −

10 + U(123U − 7)

3200
kδd,7 (4.17)

+
U(75920+U(−284038+2262727U ))−1484

64012032U2
k2δd,9+. . .

)

.

The Hawking temperature and the event horizon area of the black strings are

TH =

√

b′(rh)f ′(rh)

4π
, AH = rd−3

h Vk,d−3L
√

ah. (4.18)

To evaluate the black string’s action, it is important to use the observation that one can

write

Rt
t +

α

4

(

Ht
t +

1

2
LGB

)

=
1

rd−2

√

f

ab

d

dr

(

− 1

2
rd−5b′

√

af

b

×
(

r2 − 1

2
α(d − 3)

(

(d − 4)(f − k) + f
ra′

a

))

, (4.19)

Rz
z +

α

4

(

Hz
z +

1

2
LGB

)

=
1

rd−2

√

f

ab

d

dr

(

− 1

2
rd−5a′

√

bf

a

×
(

r2 − 1

2
α(d − 3)

(

(d − 4)(f − k) + f
rb′

b

))

. (4.20)
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Integrating the first relation above taken together with the field equations (2.3), we isolate

the bulk action contribution at infinity and at r = rh. The divergent contributions given by

the surface integral term at infinity are canceled by I
(E)
b + I

(GB)
b + Ict (with Ict = I0

ct + Is
ct),

which results in a finite expression of Icl. Together with (2.23), we find the entropy of

solutions

S = S0 + Sc, with S0 =
AH

4G
, Sc =

k

4G

α

2
(d − 3)(d − 4)rd−5

h LVk,d−3
√

ah . (4.21)

Therefore, similar to the black hole case, the entropy of a black string is not simply propor-

tional to the black hole horizon area as it is in the Einstein gravity, but has an extra term

proportional to the GB coupling parameter (note that, as expected, the GB contribution to

S is proportional to the extra-term in the entropy of a (d − 1)-dimensional Schwarzschild-

GB-AdS black hole (3.1)). Moreover, the entropy of a black string can also be formally

written in Wald’s form (3.9), the GB contribution being proportional again with the Ricci

scalar of the event horizon.

By using the second relation in (4.19) we find also that I = −βT L. This relation to-

gether with (2.23) leads to an unexpectedly simple Smarr-type formula, relating quantities

defined at infinity to quantities defined at the event horizon:

M + T L = THS , (4.22)

which is the result found in [20] for solutions without a GB term. This relation also

provided a useful check of the accuracy of the numerical solutions we have obtain.

The first law of thermodynamics (2.24) looks more complicated for black strings as

compared to the black hole case, since the lenght scale L enters there as an extensive

parameter [62], i.e. µ = T , C = L. In the absence of closed form solutions, the validity

of the generic relation (2.24) can be verified only numerically. In practice, for both d = 5

and d = 6 solutions, we have integrated the first law for a fixed period L and computed

a value of mass. Then the expression of the tension is computed17 from the Smarr-type

formula (4.22). The values of M and T computed in this way were found to coincide with

a reasonable accuracy with those derived by using the expression (4.15), up to the overall

Casimir terms M0, T0.

We give here also the expectation value of the stress tensor of the dual theory for the

simplest case d = 5 (with the background metric upon which the dual field theory resides

habdxadxb = ℓ2
cdΣ2

k,2 + dz2 − dt2, and x1 = θ, x2 = φ, x3 = z, x4 = t, while θ, φ are the

coordinates on a surface of constant r, t)

8πG〈τa
b 〉 = k2











3−U
24ℓc

0 0 0

0 3−U
24ℓc

0 0

0 0 2U−3
24ℓc

0

0 0 0 2U−3
24ℓc











+













− (ct+cz)U
2ℓc

0 0 0

0 − (ct+cz)U
2ℓc

0 0

0 0 (3cz−ct)U
2ℓc

0

0 0 0 (3ct−cz)U
2ℓc













.

17This is the standard approach used to compute the mass and tension of the Λ = 0 black string solutions

presenting a dependence on the extra-coordinate z, in which case it has proven very difficult to read M and

T from the asymptotic data at infinity, see e.g. [63].
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Figure 1: The profiles of the metric functions gtt, gzz and 1/grr are shown for typical k = ±1 black

string solutions in EGB theory. For comparison, we included also the profiles of the corresponding

solutions in Einstein gravity.

As expected, this anisotropic perfect fluid stress tensor is finite and covariantly conserved.

However, for k 6= 0 it is not traceless, with

8πG〈τa
a 〉 =

ℓ3
c

8

((

1 − 4U

3

)

R
2 + (5U − 4)RabR

ab + (1 − U)RabcdR
abcd

)

, (4.23)

(where the geometric quantities are computed for the metric hab). For U = 1 (i.e. α = 0),

this trace is equal to the conformal anomaly of the boundary CFT [61]. A similar compu-

tation performed for the d = 7, 9 cases leads again to a nonvanishing trace of the boundary

stress tensor. As discussed at length in [54], the trace of 〈τa
a 〉 for the seven-dimensional

Einstein gravity black string solutions matches precisely the conformal anomaly of the dual

six-dimensional superconformal (2, 0) theory [61, 64].

One can see that the coupling constant α enters the expression of the trace anomaly

and Casimir energy for both EGB black holes and black strings. This is what we expect

on general grounds,18 since in EGB theory the effective radius (2.8) of the AdS space and

the boundary metric depend on α.

We close this part by remarking that by performing the double analytic continuation

z → iu, t → iχ with a simultaneous exhange of corresponding charges, the black strings

become static bubble of nothing solutions in EGB theory. In order to obtain a regular

solution, the spatial coordinate χ is identified with a period β = 1/TH .

4.4 Numerical results

In the absence of closed form solutions, we relied in this case on numerical methods to solve

the EGB equations. The numerical methods here are similar to those used in literature to

study other Λ < 0 black string solutions [54, 58, 59]. Taking units such that G = 1, we used

18However, a more realistic string theory computation would require to consider solutions in a different

model than (2.1), containing α3 corrections consisting in Weyl-squared terms.
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Figure 2: The effects on the solutions of a nonzero Gauss-Bonnet coupling constant is plotted

for two k = 1 black strings in d = 8. The small r region of the profiles of the metric function in

Einstein gravity is also plotted.

a standard solver which involves a Newton-Raphson method for boundary-value ordinary

differential equations, equipped with an adaptive mesh selection procedure [65]. Typical

mesh sizes include 103 −104 points. The solutions have a typical relative accuracy of 10−8.

For k = 0, the EGB equations admit the exact solution a = r2, b = f (where f is

given by (3.3)), which was recovered by our numerical procedure. This solution is likely to

be unique, corresponding to the known planar topological black hole (4.1). Therefore we

shall concentrate here on the cases k = ±1.

In order to construct numerical solutions for a given d, the constants (α,Λ) have

to be fixed. Then the solution is further specified by the event horizon rh. Given the

complexity of the problem, the complete classification of the solutions in the space of

parameters is a considerable task that is not aimed in this paper. Instead, we set ℓ = 1 by

using a suitable rescaling, and analyse in detail a few particular classes of solutions, which

hopefully would reflect all relevant properties of the general pattern. Also, we shall restrict

in this work to the study of the branch of solutions smoothly emerging from the Einstein

gravity configurations. Although most of the numerical data presented here corresponds

to d = 5, 6, in which cases new qualitative features exist, we have found also solutions for

d = 7, 8. Therefore we conjecture that they exist for any d ≥ 5.

For all configurations we have studied, the metric functions a(r), b(r) and f(r) interpo-

late monotonically between the corresponding values at r = rh and the asymptotic values

at infinity, without presenting any local extrema. The profiles of the metric functions of

typical EGB black string solutions are presented on figures 1,2 together with the corre-

sponding data in Einstein gravity. One can see that a nonzero α leads to a deformation of

all metric functions at all scales and is particularly apparent on the function gzz = a(r).

When studying the dependence of the black strings on the GB parameter α and the

event horizon radius rh we have found that they present an unexpectedly rich structure.
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Figure 3: The mass-parameter M , the tension T (without the Casimir terms), the value of the

metric function a(r) at the event horizon as well as the Hawking temperature TH and the entropy

S of k = 1 black string solutions with α = 0.1 are represented as functions of the event horizon

radius in d = 5, 6 dimensions.

As discussed in [20, 54], the AdS black strings in d-dimensions follow the general pattern

of the black holes with the same index k in (d−1) dimensions. This remains valid for EGB

configurations. Therefore the cases d = 5, 6 with k = 1 are rather special, since there are

no EGB black holes in four dimensions, while the d = 5 EGB black holes with spherical

horizon have distinct properties.

Before discussing the pattern of solutions, let us briefly recall the structure of the k = 1

black strings in the Einstein theory. In [20] it was shown that a family of black strings exist

presenting a regular horizon at r = rh for all rh > 0. On the other hand, the equations

also admit a vortex-like regular solution on r ∈ [0,∞) with f(0) = 1, a(0) > 0, b(0) > 0.

In the limit rh → 0, the black strings approach this regular solution. In particular, the

derivatives f ′(rh) and b′(rh) both diverge for rh → 0. However, the regular solution has a

finite and nozero mass and tension, for any value of d.

This picture is very different in the EGB theory. First, our numerical results show

that the d = 5, 6 k = 1 globally regular solutions with rh = 0, which exist for α = 0, do

not appear in the EGB theory. For d = 5 this can be understood by noticing the existence

of a minimal allowed value of rh, which results from the expression of the parameter f1 in

the event horizon expansion (4.5)

f1 =
r2
h(ℓ2 + 2α)

ℓ2α
− 1

ℓ2α

√

(ℓ2 − 2α)
(

r2
h(ℓ2 − 2α) − 2ℓ2α

)

> 0, (4.24)

(the general d−expression is much more complicated), which implies rh > ℓ/
√

ℓ2/(2α) − 1.

Thus there exist a minimal value of rh for which the Einstein black strings can be gener-

alized into EGB ones.19 This is a nonperturbative effect, which cannot be seen consider-

19As discussed in [60], the d = 5 black strings in Kaluza-Klein theory (Λ = 0) present also a minimal

horizon size rh(min) =
√

2α. This can be seen by taking the ℓ → ∞ limit in the AdS relation (4.24).
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are plotted as a function of α for d = 5, 6 black string with k = 1.

ing the GB term as a small deformation of the Einstein gravity, in which case one finds

f1 = 1/rh + 4rh/ℓ2 + α/(2r3
h) + O(α)2.

The pattern of k = 1 solutions is different for d = 6. Fixing rh > 0, we could construct

for all rh > 0 a family of solution for α ∈ [0, αmax]. In the limit α → 0, the Einstein theory

solution is approached smoothly (different from the d = 5 case discussed above). The limit

rh → 0 is different, however, from the α = 0 case, since no globally regular solution is found

in this case. Instead, a(0) → 0 while f ′(rh) and b′(rh) take finite (and very small) values

in this limit. As a result, the Ricci scalar diverges and a naked singular configuration is

approached.20 These different observations clearly suggest that the two limits α → 0 and

rh → 0 do not intercomute in the pattern of solutions available for d = 6.

Of course, the results above do not prove the absence of k = 1 globally regular con-

figurations in EGB theory with negative Λ (although unlikely, they may be disconnected

from the studied black string branch). For example, for any d it is possible to write a con-

sistent expansion of the solution near the origin as a power series in r. However, for both

d = 5 and d = 6 we have failed to find such solutions, when considering the corresponding

boundary value problem.

The situation appears to be different for d > 6 (and k = 1), in which case the α = 0

pattern found in [20] is still valid. There the black string event horizon radius is an arbitrary

parameter. Our numerics suggest that, for a given α ≤ αmax, a globally regular solution is

approached as rh → 0, while the parameters f ′(rh), b′(rh) diverge in this limit (therefore

also the Hawking temperature), while a(rh) remains finite and nonzero. These features are

presented in figure 2, where we plot the data for two d = 8 black string with a small event

horizon radius rh = 0.01 together with the corresponding solution in Einstein gravity21 (the

20For both d = 5 and d = 6, we have found rather difficult to approach the limiting rh configurations by

employing the ansatz (4.1). A different metric parametrization appears to be necessary.
21One can see that, as implied by (4.6), given the small values of α for the two profiles in figure 2, the

ratio between the metric functions in EGB theory and those in Einstein gravity is very close to one for

large enough values of the radial coordinate.
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Figure 5: The dependence of the solutions’ parameters on the event horizon radius rh and Gauss-

Bonnet parameter α is presented for k = −1 topological black strings in five dimensions.

profiles of the metric functions for large rh look similar to those in figure 1 (with k = 1)).

One can see that both f(r) and b(r) present a sharp transition in a small region near the

horizon, where a(r) remain almost constant and nonzero. However, the severe numerical

difficulties encountered for small rh solutions with α 6= 0 prevented us from analyzing in

details the black string-globally regular vortex transition.

We have also increased the event horizon radius rh for several values of α and found

no evidence of a maximal value of rh where the solutions could eventually terminate. In

figure 3 we plot a number of relevant physical quantities as a function of the event horizon

radius for the special d = 5 and d = 6 cases (the corresponding plots for d = 6, 7 present

the same qualitative features as the Einstein gravity data exhibited in [20] and we shall

not present them here). (Note that all values of M , T and S plotted in this section are

divided by a factor Vk,d−2. Also, we have subtracted the Casimir terms from the d = 5

values of the mass and tension, as computed according to (4.15)).

We have also studied the dependence of the k = 1 solutions of the GB parameter

α, for fixed values of the event horizon radius (see figure 4). The solutions exist up to

a maximal value of α. The configuration corresponding to αmax does not present any

special properties. For those values of rh where solutions were found, we stronly suspect

the existence of a second branch of solutions, also terminating at α = αmax, but it was not

attempted to construct it in a systematic way.

Considering now topological back string solutions, our results show that their quali-

tative features are similar to those in the Einstein gravity. They also exist for all values

of rh > rh(min), with rh(min) decreasing with α. The mass, temperature and entropy of

the k = −1 configurations increase monotonically with rh, while the tension decreases (see

figure 5). As a result, the thermodynamic of these solutions is similar to the α = 0 case

and they present a positive specific heat C = TH(∂S/∂TH ) > 0, although, from (4.21) (and

similar to the black hole case), the entropy may take also negative values.

However, when considering the thermodynamics of black strings, the situation is much
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more complicated for k = 1 solutions. Restricting to the case of local stability, the be-

haviour of configurations with α = 0 follows the pattern of the corresponding black hole

solutions in AdS background [20]. That is small black strings have negative specific heat

(they are unstable) but large size black strings have positive specific heat (and they are

stable). However, the picture for d = 6 is somehow similar to the one of the electrically

charged black strings in the canonical ensemble discussed in [54]. Our results suggest also

that for large enough values of the parameter α only one branch of stable solutions exist.

As the coupling constant decreases bellow a critical value, additional branches appear, of

intermediate and small sizes, of which the former has negative specific heat while the small

black strings branch has positive specific heat (see figure 6). The picture for d = 5 is com-

plicated by the existence of a minimal value of the event horizon radius for a given value

of α. For small enough values of α, one finds two branches of solutions, with a negative

specific heat for the small black strings branch. As seen in figure 6, if the GB parameter

is large enough, all black strings solutions are locally stable. As expected, for d > 6, the

thermodynamics of the EGB black strings exhibits the same qualitative features as in the

Einstein gravity case.

5. Further remarks

The main purpose of this work was to present the boundary counterterm that removes the

divergences of the action and conserved quantities of the solutions in EGB theory with

negative cosmological constant for a spacetime dimension d ≤ 9. The basic pieces are

those used in Einstein gravity plus Lovelock gravity densities. Their coefficients, however,

present an explicit dependence of the dimensionless factor αΛ.

One expects that once these coefficients are fixed, one may use the same countert-

erms to regulate the action for any choice of coordinates on any asymptotically AdS solu-

tion in EGB theory. This approach is useful particularly for the cases where appropriate

backgrounds are ambiguous or unknown. For example, we have found that the proposed
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boundary counterterms provides a finite action and mass for the NUT-charged solutions

in EGB gravity found in [66]. These configurations are particularly interesting, since as

discussed e.g. in [67], the usual relationship between area and entropy is already violated in

Einstein theory for a nonzero NUT charge. The boundary counterterm formalism provides

a possibility to evaluate the entropy of such solutions in theories with higher derivatives.

The counterterm proposed in section 2 has been derived by considering a range of

asymptotically AdS solutions in EGB gravity, which does not guarantees its universality.

However, on general grounds, one expects the boundary counterterm action in EGB theory

to be universal, being composed of a unique linear combination of curvature invariants

that cancel the divergences in the total action in the limit when the boundary contains

the full spacetime. For asymptotically AdS solutions in the Einstein gravity, there exist an

algorithmic procedure for constructing Ict in a rigurous way, and so its determination is

unique for α = 0 [68]. This procedure involves solving the Einstein equations (written in

Gauss-Codacci form) in terms of the extrinsec curvature functional of the boundary and

its derivatives to isolate the divergent parts. All divergent contributions can be expressed

in terms of intrinsic boundary data and do not depend on normal derivatives. In principle,

this approach can be extended to asymptotically AdS solutions in EGB theory, the only

obstacle beng the tremendous complexity of the required computation.

In the second part of our paper we have applied the general formalism to two different

kind of asymptotically AdS black objects in EGB theory. The results we have found in

the static black hole case are similar to those exhibited in the literature by employing a

different approach. In section 4 we have presented a set of new solutions, generalizing the

Einstein gravity black strings with Λ < 0 to EGB theory. As argued there, the presence

of a GB term in the lagrangean leads to some interesting new features in five and six

dimensions, in particular the absence of vortex-like solutions without an event horizon.

The phase structure there gets also modified when including α−corrections. For example,

in addition to the large thermodynamically stable black strings, there are also small d = 6

stable solutions along with intermediate unstable ones. The issue of Gregory-Laflamme

instability of these black string is an interesting question. Based on the Gubser-Mitra

conjecture [69] that correlates the dynamical and thermodynamical stability, we expect a

more complex picture in this case than for the Einstein gravity solutions [58].

One can address also the situation when matter fields are added to the bulk action (2.1).

One can verify that the counterterms proposed in section 2 regularize [70] the action and

mass of the Reissner-Nordstrom generalizations of the black holes (3.1). However, the

situation is different for d ≥ 5 nonabelian theories [55, 71] or for d = 5 black strings

with a magnetic U(1) field [56], in which case new, non-geometric counterterms should be

added to the action already for α = 0. An interesting open problem would be to find the

corresponding counterterm expression for d ≥ 7 asymptotically AdS solutions with higher

order terms in the Lovelock gravity.
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